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Abstract Taken at face value, a programming language is defined by a formal gram-
mar. But, clearly, there is more to it. By themselves, the naked strings of the language
do not determine when a program is correct relative to some specification. For this,
the constructs of the language must be given some semantic content. Moreover, to be
employed to generate physical computations, a programming language must have a
physical implementation. How are we to conceptualize this complex package? Onto-
logically, what kind of thing is it? In this paper, we shall argue that an appropriate
conceptualization is furnished by the notion of a technical artifact.

Keywords Programming languages · Semantics · Technical artifacts ·
Philosophy of mathematics · Philosophy of technology

1 Programming Languages

What kind of thing is a programming language? Is it a language defined by a formal
grammar, a mathematical object, something only brought into existence by a physical
implementation, or somehow a combination of all three?

On the face of it, it is just a language determined by a formal grammar. How-
ever, there must be some account of what the constructs of the language are taken
to mean. Without such, we would not be able to articulate the meaning of any pro-
gram. At least we would not under the rather plausible assumption that the meaning
of a complex program is compositionally dependent upon the meanings of its com-
ponents. Presumably, programs are normally intended to meet some independently
given specification. But without some semantic account of the program, we would
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not be able to articulate the required relationship between what a program means and
what its specification insists it should achieve. So we would have no notion of seman-
tic correctness for programs. This is not only a practical demand but also a conceptual
one: without a notion of what it is for a program to be correct relative to a given
specification, any program would be as good as any other. And this is nonsensical.
Programming would be a trivial activity with no notion of correctness.

Moreover, unless one is only concerned with the construction of programs for
purely mathematical purposes (e.g., to demonstrate the existence of an algorithm)
even more is required. Programmers write programs to carry out physical computa-
tions, presumably ones that cannot be done by hand. For example, a program that
processes visual information must be underpinned by a physical device that actually
performs the task. For this, a physical implementation of the language is required.

So the purely grammatical thing that we might initially think of as the program-
ming language is not the complete thing that is used by programmers. We suggest
that this consists of the package that is constituted by the grammar/semantic defini-
tion on the one hand and a physical implementation on the other, i.e., these packages
are made up of an abstract mathematical notion (grammar1/semantics) and a concrete
physical one (implementation).

At the level of individual programs, this duality has been observed by many
authors (Colburn 2000; Colburn and Shute 2007; Irmak 2012; Moor 1978). From the
early days of the subject, we have the influential paper of Moor, who, in the course
of demolishing the apparent clarity of the software/hardware distinction, writes:

It is important to remember that computer programs can be understood on the
physical level as well as the symbolic level. The programming of early digital
computers was commonly done by plugging in wires and throwing switches. Some
analogue computers are still programmed in this way. The resulting programs are
clearly as physical and as much a part of the computer system as any other part.
Today digital machines usually store a program internally to speed up the execution
of the program. A program in such a form is certainly physical and part of the
computer system. (Moor 1978)

The following is of more recent origin and more explicitly expresses the duality
thesis.

Many philosophers and computer scientists share the intuition that software has a
dual nature (Moor 1978; Colburn 2000). It appears that software is both an algo-
rithm, a set of instructions, and a concrete object or a physical causal process.
(Irmak 2012)

Seemingly, programs are both abstract objects and physical causal processes.
However, it is from the whole language that the duality emanates. Although many
authors talk as if programs may be detached from host languages and seem to assume

1We shall use the terms grammar/grammatical and syntax/syntactical interchangeably.
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that individual programs have stand alone meanings and implementations, this is not
coherent. Programs have their meanings given by the meanings of their contained
constructs, and, generally, the semantics must preserve the meanings of the constructs
across programs. Confusion over this issue stems from a failure to cleanly distinguish
the inherited semantics of the program from an external specification of what it is
supposed to do (Sprevak 2010).

However, the same conceptual questions arise for both languages and programs.
How are the two manifestations, the abstract and the concrete, related? We shall argue
that the appropriate way to conceptualize matters is via the notion of a technical
artifact (Franssen et al. 2009).

2 The Duality of Technical Artifacts

Technical artifacts include all the common objects of everyday life such as televi-
sions, computer keyboards, paper clips, telephones, smart phones, dog collars, and
cars. They are intentionally produced things. This is an essential part of being a tech-
nical artifact. For example, a physical object that accidently carries out arithmetic
is not by itself a calculator. This teleological aspect distinguishes them from other
physical objects.

Natural objects just happen. Descriptions of them as kinds, or in the case of bio-
logical objects in terms of their function, are post hoc and best seen as theories about
them. Moreover, technical artifacts can only fulfill their intended function because
of their actual physical structure. This is quite different to social constructions such
as money where there is no necessary connection between function and physical
structure.

This insistence on the need for a purpose or function has led philosophers to argue
that technical artifacts have a dual nature fixed by two sets of properties (e.g., Kroes
2010, 2012; Meijers 2001; Thomasson 2003, 2007; and Vermaas and Houkes 2003):

• Functional Properties
• Structural Properties

Functional properties relate to what the artifact does. For example, a kettle is for
boiling water and a cycle is for transportation. In engineering, Kroes (2010) func-
tional properties are articulated as black box specifications in which the object of
design is specified only in terms of its input and output behavior. For example, a
kettle might be schematically specified in terms of its function as follows.

Input : water Output : boiling water

On the other hand, structural properties pertain to its physical makeup. They include
its weight, color, size, shape, its chemical constitution, etc. In particular, we might
insist that our kettle is to be made of copper and holds two pints.

In summary, technical artifacts are individuated by the two descriptions: the func-
tional and structural. The physical thing by itself is not a technical artifact. And of
course there can be many such implementations. And each functional description and
implementation determines a different artifact.
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How does this duality unpack in the case of a programming language package?
To address this, we shall take the engineering design (e.g., Kroes 2010, 2012) view
where the focus is on the specification, design, and construction of the artifact. All
sorts of issues arise.

Technical artefacts are indeed often characterized as intentionally made physical
constructions that, on condition that they are functioning and used properly, sup-
port users in realizing their goals. Such a rough characterization raises questions
about whether technical artefacts are mere physical constructions, about what it
means for a technical artefact to function properly or to be used properly, about
how technical artefacts are related to human intentions or human goals, or whether
there is a clear demarcation line between technical artefacts and natural objects.
(Kroes 2012)

These questions have analogs in connection with a programming language pack-
age.2 In particular, we must spell out what constitutes the functional properties,
what constitutes the structural ones, examine the various approaches to the relation-
ship between the two, address the question of correctness, and discuss how human
intention gets into the picture. These correspond to the following sections.

3 Function

In computer science a functional specification (Turner 2011) informs us how input
and output are to be related. This relationship is expressed in a large variety of ways
using a host of formalisms and languages. Specialized specification languages such
as Z (Spivey 1988) and VDM (Jones 1990) have been constructed to support software
specification, and HOL (Gordon 1986) to facilitate the specification of hardware. In
a similar manner, formalisms and mathematical systems have been introduced and
used for the functional definition of whole programming languages.

On the one hand, the definition of a programming language is the definition of a
mathematical object. It functions as a specification when it is given governance over
the construction of an implementation of the language. In this role, it provides the
criterion of correctness for the implementation. So how is the appropriate concept of
functional specification be provided? Before we address this question, we must clear
the ground a little.

Cars and computers are complex artifacts. The latter may have a CPU, a mother-
board, some memory, a hard drive, a GPU, etc. These various components collaborate
to produce the function of the whole artifact. In a similar manner, a programming

2Of course programs are artifacts in their own right, but in an inherited way. The distinction might be best
seen in terms of a simple analogy. Consider a sophisticated knitting machine with its own input interface.
As an artifact, it must be distinguished from any cardigans it produces. Indeed, the situation is even more
complex than this: the knitting machine is more like a universal Turing machine, the knitting-machine
program is like a computer program (written in its own programming language), and the cardigan is its
output.
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language is made up of syntactic constructs such as while loops, conditionals, recur-
sive definitions, etc. Each of them has an individual function that contributes to the
function of grammatically correct programs in the language. So one must provide a
functional specification for each such component. In the context of the computer sci-
ence notion of functional specification, we must provide the input/output behavior
for each construct.

A standard way of achieving this is in terms of the impact of each of the constructs
on an underlying abstract machine and the functional description takes the form of
an abstract semantics for the language (Fernandez 2004; Gordon 1979; Milne and
Strachey 1977; Schmidt 1988; Stoy 1977; Tennent 1991; Turner 2007; White 2004;
Winskel 1993).

To illustrate matters, we shall employ the following simple abstract machine
whose underlying state stores numerical values in locations. We shall represent this
as a finite partial function from a finite set of locations (Location) to a finite set of
natural number values (Number).

State � Location ��� Number

It is partial since it is not assumed that all locations have values in them.3

There are two main contemporary approaches to semantics: operational (Fernan-
dez 2004; Landin 1964; Plotkin 1981) and denotational (Gordon 1979; Schmidt
1988; Stoy 1977). In order to illustrate some conceptual issues, we shall briefly
discuss them both. We shall use some very simple programming constructs to illus-
trate what we shall argue yields the appropriate notion of function for programming
languages.

3.1 Operational Semantics

We begin with a modern form of operational semantics (Fernandez 2004; Plotkin
1981) where the impact of the constructs on the state is given via rules of evaluation.
The primary judgment is written as4

< P, s >⇓ s′

and pronounced as < P, s > leads to s′. It is taken to express the judgment that eval-
uating the program P in state s terminates and returns the state s′. In the following,
E are numerical expressions and B are Boolean expressions. We shall ignore their
structure and concentrate on the actual Programs. Their semantics is given by oper-
ational rules. The idea behind them is simple enough: if the premises represent the
state changes of the components of the program, then the conclusion represents the
state changes of the whole program.

3This may be formalized in the abstract data type of finite sets or any functional language; one certainly
does not need to assume the whole of set theory (ZF).
4This is related to the Hoare notation

s{P }s′

but in our case, the state s′ has to be a terminating state. The Hoare notation is closer to the so called small
step operational semantics.
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The most basic program corresponds to the update operation of the machine: it is
the simple assignment statement. It is governed by the following rules.

x : Location E : Exp

x := E : Program

V al(E, s) = v

< x := E, s >⇓ Updates[s, x, v]
where V al(E, s) is the value of the expression E in the state s and Updates[s, x, v]
is the partial function that is identical to s except perhaps that s[x] = v. The first
rule is a grammatical rule and insists that it generates a program. The second, the
semantic one, unpacks the meaning of assignment in terms of the update operation
of the machine. According to it, if the execution of E in the state s returns the value
v, then the execution of x := E in a state s returns the state Update(s, x, v).

Our first complex construct allows the sequencing (P ; Q) of programs.

P : Program Q : Program

P ; Q : Program

< P, s >⇓ s′ < Q, s′ >⇓ s′′

< P ; Q, s >⇓ s′′

The first rule informs us that programs can be sequenced. The second, the semantic
rule, demands that sequencing is executed by first executing P in state s. If this yields
the state s′, then we execute Q in s′. If this returns the state s′′, then the execution of
P ; Q in s returns the state s′′.

Finally, to put a bit more meat on things, we consider a slightly more complex
construct. The initial rule informs us that we can form an iterative program from a
Boolean expression and an existing program. The semantic rules split according to
whether the Boolean is f alse or true. If the execution of B in s returns true and the
execution of P in s returns s′, and the execution of while B do P in s′ yields s′′, then
the execution of while B do P in s returns s′′. If the execution B in s returns f alse,
then the execution of while B do P in s, returns s.

B : Boolean P : Program

While B do P : Program

< B, s >⇓ f alse

< While B do P, s >⇓ s

< B, s >⇓ true < P, s >⇓ s′ < While B do P, s′ >⇓ s′′

< While B do P, s >⇓ s′′

To unpack and emphasize the mathematical nature of the semantics, we shall
explore matters a little. Observe that we may define

< P, s >⇓ � ∃s′· < P, s >⇓ s′

This defines what it is for a program to terminate when it is evaluated in a given state.
We may also define a notion of equivalence for programs/operations.

P � Q � ∀s · ∀s′· < P, s >⇓ s′ ↔< Q, s >⇓ s′

i.e., they are taken to be equal if we cannot tell them apart in terms of their extensional
behavior.

Of course, we could carry out a more adventurous mathematical investigation, e.g.,
prove that the system is consistent, etc. But we have done enough to make the obvious
point: the language and its definition constitutes an axiomatic theory where the rules
provide an axiomatic treatment of evaluation. From this perspective, a programming
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language is an axiomatic theory of operations where the relation ⇓ is taken to be
axiomatized by the rules.

Of course, one might claim that these axiomatizations are not always made in
the precise axiomatic style given here. Often, the operational definitions are given in
natural language. For example, we might just be given something of the following
form:

• If the execution of B in s returns true and the execution of P in s returns s′, and
the execution of while B do P in s′ yields s′′, then the execution of while B do
P in s returns s′′. If the execution B in s returns f alse, then the execution of
while B do P in s, returns s.

But it is clear that our axiomatic description is nothing more than a reformulation
where < P, s >⇓ s′ expresses the statement that evaluating the program P in state
s terminates in the state s′, and the conditional statements are recast as rules with the
antecedent functioning as the premise, and the consequent as the conclusion. But,
usually, both formal and informal accounts are given side by side (Börger and Schulte
2007).

3.2 Denotational Semantics

The alternative approach, the denotational one, provides a direct interpretation into
another mathematical theory (e.g., set theory). For the constructs of our language,
this might take the following form.

‖x := n‖ s � Updates[s, x, n]
‖P1; P2‖ s � ‖P2‖ (‖P1‖ s)

‖While B do P‖ s �
{

s if ‖B‖ s = f alse

‖While B do P‖ (‖P‖ s) if ‖B‖ s = true

}

where
‖P‖ s

is the state that results from the evaluation of the program P in state s and where � is
partial equality that allows for the fact that programs may not terminate. This yields a
version of denotational semantics (Gordon 1979; Gunter 1992; Stoy 1977; Milne and
Strachey 1977; Tennent 1991; Winskel 1993) where each program is associated with
a partial state to state (set theoretic) function. Notice how the latter requires some
justification since there is a hidden fixed-point construction.

In some cases, the denotational notion of equality is as finely grained as the
operational one of observational equivalence, where, informally, we say that two
programs are observationally equivalent if there exists no closed program context C
that can operationally distinguish between them. But, sometimes, it is not. In these
circumstances, which account is taken to define the programming language as a
mathematical entity?

In the way that the two are used in relationship to each other, the way they are
treated in the literature (Abramsky et al. 1994; Abramsky and McCusker 1995), the
operational account is in the driving seat: the denotational one must agree with the
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operational one, i.e., the operational account is taken to define the programming lan-
guage as a mathematical object.5 The operational account defines the language as a
theory of computation in much the same way that the Lambda calculus is defined by
its rules of reduction. On this perspective, the main role of the denotational account
is not definitional but to facilitate mathematical exploration of the language.6

3.3 Axiomatization

Actually, the operational account may be fundamental in a more traditional mathe-
matical way: it is more fundamental because it seeks to axiomatize the notions of the
language directly; it is ontologically more sensitive. Translations into other mathe-
matical systems do not take the primitives of the language as fundamental notions
axiomatized by the rules. For example, in the case of our simple constructs, the trans-
lations into set theory are not basic axiomatizations of the any primitive notion of
operation; they are set theoretic interpretations of such a notion as partial functions
in ZF. Their success is measured by how well they preserve basic computational intu-
itions: programs represented as infinite sets do not generally capture the computable
nature of programs.7

The Lambda calculus is not defined by its set theoretic models but by its
rules. Similarly, Turing machines are defined by their rules, not by any extraneous
mathematical interpretation. This is consistent with Gödel’s remark:

The greatest improvement was made possible through the precise definition of the
concept of finite procedure, which plays a decisive role in these results. There are
several different ways of arriving at such a definition, which, however, all lead to
the same concept. The most satisfactory way, in my opinion, is that of reducing
the concept of finite procedure to that of a machine with a finite number of parts,
as has been done by the British mathematician Turing (Gödel 1934).

Presumably, it is in the details of the primitive notion of a Turing machine that
made it definitive, not any set theoretic model of Turing machines. In particu-
lar, Gödel did not accept that the Lambda calculus version of computability was
equally good as a direct formalization of the notion of finite procedure. They may
be extensionally equivalent, but they are intensionally different. Turing machines
and the Lambda calculus represent different computational paradigms. Interpreta-
tions into the same mathematical theory may well obscure this. But to be clear,

5Indeed, much work has been done to construct denotational definitions that are in harmony with the
operational ones. This often requires the use of a version of denotational semantics based upon games
(Abramsky et al. 1994; Abramsky and McCusker 1995; Stoughton 1988; Mulmuley 1987).
6This is unlike the classical role of the Tarski notion of truth for predicate logic which is taken to fix the
meaning of the logical constants.
7Category theoretic interpretations fair much better in giving a more intensional flavor to the interpre-
tation (White 2004) and could be argued to provide an alternative framework for the axiomatization of
computational notions.
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the main conceptual point of this section does not depend upon the particular tech-
nique of formalization; however, they are articulated, the operational rules define the
language.

Of course, modern programming languages involve much more complex notions
than the toy ones that we have chosen to illustrate our main conceptual point. They
involve sophisticated notions of type, process, objects, classes, monads, abstract
types, etc. But underlying these more complex notions are fundamental mathemati-
cal concepts. For instance, the recent history of type theory (Barendregt 1992; Girard
1971; Mitchell 1996; Pierce 2002; Reynolds 1994) has provided a host of new notions
of type (Girard 1971; Reynolds 1994). Cardelli and Abadi (1996) introduces a wide
range of theories of objects and classes. The π−calculus (Milner 1993) belongs to
the family of process calculi, mathematical formalisms for describing and analyzing
properties of concurrent computation. In turn, these new theories, often modified
and simplified, find their way into actual programming languages; they form their
conceptual core. For example, the Lambda calculus inspired a whole generation of
functional languages, such as Miranda (Thompson 1995), SML (Hanson and Rischel
1999), Haskell (Thompson 2011), etc.

In their definitional/functional guise, programming languages are complex and
rich axiomatic theories of operations, processes, objects, or whatever fundamental
notions are taken to be part of the language. These theories are definitional. This
much is in agreement with Hilbert’s view of axiomatic systems.

In my opinion, a concept can be fixed logically only by its relations to other con-
cepts. These relations, formulated in certain statements, I call axioms, thus arriving
at the view that axioms (perhaps together with propositions assigning names to
concepts) are the definitions of the concepts. I did not think up this view because
I had nothing better to do, but I found myself forced into it by the requirements
of strictness in logical inference and in the logical construction of a theory. I have
become convinced that the more subtle parts of mathematics ... can be treated with
certainty only in this way; otherwise one is going around in a circle. (Hilbert 1899).

The axiomatic theories fix the meaning of its internal concepts as implicit defini-
tions. And this is precisely what operational accounts do for programming languages.
Potentially, each one offers us an axiomatic theory of computation.

4 Structure

Pure mathematical objects may be given and employed independently of any physical
realization. But while in their functional guise programming languages have the
form of axiomatic theories, they are more than this: they are intended to be used.
But, in order to be used, they have to be implemented. A structural description of the
language must say how this is to be achieved. It must spell out how the constructs of
the language are to be physically instantiated.

To illustrate the simplest case, consider the assignment instruction.

x := E
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An implementation might take the following form.

• Physically compute the value of E.
• Place the (physical token for) the value of E in the physical location named x;

any existing token of value to be replaced.

This is a description of how assignment is to be physically realized. It is a physical
description of the process of evaluation. Of course, a complete description will spell
out more, but presumably not what the actual machine is made of; one assumes that
this would be part of the structural description of the underlying computer. The task
of the structural description is only to describe the process of implementation on a
class of physical machines where there is already some given assumptions about the
latter’s physical structure.

In the case of more complex expressions, one must stipulate how the constructs of
the language are to be implemented. For example, to execute commands in sequence,
we could add a physical stack that arranges them for processing in sequence. Of
course, matters are seldom this straightforward. Constructs such as iteration and
recursion require more sophisticated treatment.

4.1 Interpreters, Compilers and Virtual Machines

In general, implementations may be direct or indirect. In the former, an interpreter
takes as input a program in the language and directly performs the operations of the
language on a physical machine. In the indirect case, a compiler translates the pro-
grams of the source language into the programs of a target language. Indeed, actual
compilation (Aho et al. 1992) may involve several passes (e.g., code generation,
assembling, linking, and loading).

Furthermore, modern programming language implementations include layers of
compilation. Part of this will almost certainly involve an interpretation on a virtual
machine that runs as a program inside a host operating system. Such a machine is
intended to be independent of any particular physical hardware and allows a program
to execute in the same way on any platform. For example, the Java programming
language is implemented using the Java virtual machine.

Perhaps the most conceptually significant virtual machine is the stack, environ-
ment, code, dump machine (SECD) intended as a target for functional programming
language compilers. The machine was designed to evaluate Lambda calculus terms
(Landin 1964). There are now many hardware implementations of the machine. This
raises the following issue.

4.2 Abstract and Concrete Machines

What kind of thing is a virtual machine? At the top level, the SECD machine is an
abstract machine, a mathematical object. However, its role during the implementa-
tion process may be twofold. Aside from its abstract role, it may have an existence as
a piece of software running on an existing operating system. As a piece of software,
it gets its functional definition from the semantic definition of the host program-
ming language and its underlying abstract machine. Indeed, an implementation may
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involve layers of virtual machines written in different programming languages with
their associated semantics, so that each of the machines has an existence both as an
abstract machine and as a software machine, and eventually as a physical device.
However, in turn, via its abstract semantics, any software machine can serve as the
functional specification of a more concrete device where, eventually, every machine
in the sequence will be transformed into an actual physical device. Throughout the
whole process, it is the abstract mathematical machines that determine function and
the correctness of the various levels of implementation.

Generally, implementations include all the processes involved in getting new soft-
ware or hardware working. The specific implementation of a programming language
is supported by a background system that has to include a mass of subsidiary soft-
ware, including the underlying operating system. We are not saying that all of this is
fixed by the language implementor; much will already be fixed by the encompass-
ing environment. The actual language implementation is constructed upon this base.
But this complexity of the implementation process does not affect our central philo-
sophical claims. While this may be quite hard to isolate, at some level, the structural
description must provide a description of how the function of each component of the
language is to be implemented on a physical device.

Finally, one might be tempted to claim that it is the physical implementation of the
language that is the technical artifact. But this would be to deny the dual nature of
technical artifacts: they must have a function. And in the case of the implementation
of a language, this is given by the semantic definition of the language. Indeed, this
confusion is the root of an even more pernicious perspective.

5 Idealization

Causal theories of function insist that actual physical capacities determine function.
Cummins’s theory of functional analysis is an influential example of such a causal
theory. The underlying intuition is that, without the physical thing, and its actual
properties, there can be no artifact: no material object, no physical capacity, no
technical function (Cummins 1975).

In the case of programming languages, this amounts to the view that the physi-
cal implementation somehow defines the semantics. This is closely related to some
comments found in the philosophy of computer science literature, i.e., to those
views that seem to advocate a causal semantic theory. For example, Fetzer (1988,
1999) observes that programs have a different semantic significance to theorems. In
particular, he asserts:

...programs are supposed to possess a semantic significance that theorems seem
to lack. For the sequences of lines that compose a program are intended to stand
for operations and procedures that can be performed by a machine, whereas the
sequences of lines that constitute a proof do not. (Fetzer 1988)

This seems to suggest that the physical properties of the implementation some-
how contribute to the meaning of programs written in the language. Colburn is more
explicit when he writes that the simple assignment statement A := 13 × 74 is
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semantically ambiguous between something like the abstract account we have given
and the physical one given as

physical memory location A receives the value of physically computing 13 times
74. (Colburn 2000)

The phrase physically computing seems to imply that what the physical machine
actually does is semantically significant, i.e., what it actually does determines or
contributes to the meaning of assignment. But this has some queer consequences.
In particular, it implies that, to fix what assignment means, we have to carry out a
physical computation. This way of unpacking the physical significance of programs
suggest that it is semantic in content. It also suggests that assignment is semantically
ambiguous between its abstract and physical meanings. But, in what sense can the
physical account contribute to the meaning of assignment?

If an actual physical machine is taken to fix or contribute to the meaning of the
constructs of the language, then their meaning is dependent upon the contingencies of
the physical device. But this entails that meaning of the simple assignment statement
may well vary with the physical state of the device and, in particular, with contingen-
cies that have little to with the semantics of the language, e.g. power cuts. Even the
evaluation of arithmetic expressions is subject to physical interference: multiplica-
tion does not mean multiplication but rather what the physical machine actually does
when it multiplies. Consequently, 13 ×74 might be 16. But this makes calculation an
activity that is subject to causal interference. But this must be wrong. As Wittgenstein
emphasizes, calculation is a mathematical activity, not an empirical one.

There are no causal connections in a calculation, only the connections of the pat-
tern. And it makes no difference to this that we work over the proof in order to
accept it. That we are therefore tempted to say that it arose as the result of a psy-
chological experiment. For the psychical course of events is not psychologically
investigated when we calculate. (Wittgenstein 1939) 382.

You aren’t calculating if, when you get now this, now that result, and cannot find
a mistake, you accept this and say: this simply shows that certain circumstances
which are still unknown have an influence on the result. This might be expressed:
if calculation reveals a causal connection to you, then you are not calculating. . . .
What I am saying comes to this, that mathematics is normative. (Wittgenstein
1939) 424.

The problem of taking the empirical notion as the basis of a semantic account is
made explicitly by Kripke in his analysis of Wittgenstein’s rule following considera-
tions.

Actual machines can malfunction: through melting wires or slipping gears they
may give the wrong answer. How is it determined when a malfunction occurs? By
reference to the program of the machine, as intended by its designer, not simply
by reference to the machine itself. Depending on the intent of the designer, any
particular phenomenon may or may not count as a machine malfunction. A pro-
grammer with suitable intentions might even have intended to make use of the fact
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that wires melt or gears slip, so that a machine that is malfunctioning for me is
behaving perfectly for him. Whether a machine ever malfunctions and, if so, when,
is not a property of the machine itself as a physical object but is well defined only
in terms of its program, stipulated by its designer. Given the program, once again,
the physical object is superfluous for the purpose of determining what function is
meant. (Kripke 1982)

The central issue is that such an account provides no notion of malfunction and
correctness. Any implementation will be vacuously correct since it itself determines
the function of the constructs of the language. There is no external demand; the
physical device is all there is. The implementation determines its own function. But
to provide an account of correctness, a functional specification must be normative
(Turner 2011).

In the case of languages, we require an account of meaning that enables us
to determine correctness. Indeed, this is a minimal requirement on any notion of
meaning.

The fact that the expression means something implies that there is a whole set of
normative truths about my behavior with that expression; namely, that my use of it
is correct in application to certain objects and not in application to others. . . . . The
normativity of meaning turns out to be, in other words, simply a new name for the
familiar fact that, regardless of whether one thinks of meaning in truth-theoretic
or assertion-theoretic terms, meaningful expressions possess conditions of correct
use. Kripke’s insight was to realize that this observation may be converted into a
condition of adequacy on theories of the determination of meaning: any proposed
candidate for the property in virtue of which an expression has meaning, must be
such as to ground the ’normativity’ of meaning—it ought to be possible to read off
from any alleged meaning-constituting property of a word, what is the correct use
of that word. (Boghossian 1989)

It is very tempting to think that physical structure determines the meaning of the
constructs of the language, and it is a common view among some working computer
scientists. But the causal approach misplaces the semantic account of the language.
Semantic accounts are not empirical claims about the behavior of a physical machine.

However, there is still a residual puzzle. Despite these considerations, when we
talk about what the constructs of the language are supposed to do, we seemingly
refer to their impact on a physical machine. This thought might be behind the quoted
remarks from Fetzer (1988). So what sense, if any, can we make of this intuition? A
way forward can be found in the writings of Wittgenstein.

In kinematics we talk of a connecting rod—not meaning a rod made of brass or
steel or what-not. We use the word ’connecting rod’ in ordinary life, but in kine-
matics we use it in a quite different way, although we say roughly the same things
about it as we say about the real rod; that it goes forward and back, rotates, etc. But
then the real rod contracts and expands, we say. What are we to say of this rod?
Does it contract and expand?—And so we say it can’t. But the truth is that there
is no question of it contracting or expanding. It is a picture of a connecting rod, a
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symbol used in this symbolism for a connecting rod. And in this symbolism there
is nothing which corresponds to a contraction or expansion of the connecting rod.
(Wittgenstein 1939)

In kinematics, one abstracts away from actual physical properties in much the
same way that functional properties are separated from structural ones. The same
theme appears in the writing of the physicist Duhem who argues for the need to
abstract and produce an ideal version on which to carry out the reasoning processes
necessary to conceptualize and employ any physical device.

When a physicist does an experiment, two very distinct representations of the
instrument on which he is working fill his mind: one is the image of the concrete
instrument that he manipulates in reality; the other is a schematic model of the
same instrument, constructed with the aid of symbols supplied by theories; and it
is on this ideal and symbolic instrument that he does his reasoning, and it is to it
that he applies the laws and formulas of physics. A manometer, for example, is on
the one hand, a series of glass tubes, solidly connected to one another filled with a
very heavy metallic liquid called mercury and on the other by the perfect fluid in
mechanics, and having at each point a certain density and temperature defined by
a certain equation of compressibility and expansion. (Duhem 1906) pp. 156–157.

The schematic model is an abstraction, a mathematical idealization of the phys-
ical object. Moreover, once this idealization is complete, there is no semantic role
left for the physical device. As Kripke puts it: Given the program, once again, the
physical object is superfluous for the purpose of determining what function is meant.
Although we intend the language to be implemented on a physical machine, the
semantic account refers to an abstraction of that machine.

So the picture seems clear: the physical implementation has no semantic import.
Instead, the semantic account of the language has normative governance over the
implementation. However, this raises the following question.

6 Correctness

When is an implementation of a language correct relative to its semantic account?
Certainly, an implementation that turns every program into the identity state to state
transformation will rarely be so. A correct implementation must meet the desider-
ata of the functional description that is constituted by the grammatical and semantic
accounts of the language. But what exactly does this amount to? We shall address this
question by reference to assignment and the abstract machine. The correctness of the
implementation of the language is then built upon this: correctness is determined by
the operational rules which provide the norms of correctness for the physical imple-
mentation of the constructs. But the central philosophical issue already arises with
the simple assignment statement.

The most famous account of correctness is given by the simple mapping account
(SMA) of Putnam (1967). A clear exposition is provided in Piccinini (2008). This
demands that a physical system is correct relative to an abstract one if the former can
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be mapped onto the abstract one in such a way that the state transitions are duplicated
in the physical version. More exactly, this is expressed as follows.

A physical system P Implements an abstract one A just in case there is a mapping
I from the states of P to the states of A such that: for any abstract state transition
s1 � s2 if P is in the physical state S1 where I (S1) = s1, then it goes into the
physical state S2 whereI (S2) = s2.

where the clause “if the system is in the physical state S1 where I (S1) = s1, then
it..” is to be interpreted as the material conditional.

For simplicity, assume that there are only two locations l and r which may contain
two possible values 0 and 1. This generates four possible states (0, 0), (0, 1), (1, 1),
and (1, 0). The following table then represents the complete input/output behavior of
our abstract machine induced by updating.

Start r := 1 r := 0 l := 1 l := 0
(0, 0) (0, 1) (0, 0) (1, 0) (0, 0)

(0, 1) (0, 1) (0, 0) (1, 1) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 0) (0, 0)

(1, 1) (1, 1) (1, 0) (1, 1) (0, 1)

In principle, to ensure that we have an implementation of assignment that is in accord
with the abstract device, we would need to check that there is an exact match between
the states of the system and the physical and abstract update tables. For example, it
is consistent with the constraints imposed by SMA, that a physical implementation
could take the states of the machine to be stones that change color with temperature. I
observe the stones and construct the following table to record the color changes with
temperatures T1, T2, T3, and T4, taken at hourly intervals during a sunny day.

Stones T1 T2 T3 T4
red blue red green red

blue blue red yellow blue

green yellow green green red

yellow yellow green yellow blue

At T1 degrees, the stones change color as indicated by the column labeled T1.
Similar goes for the other columns. According to the SMA, the system of colored
stones implements the abstract machine, and the sun shining on the stones imple-
ments assignment. Of course, it is not essential that the Ti are temperature changes;
they could be any physical process. According to SMA, with its material notion of
implication, they have only to be in accord with the table.

The upshot of this is that SMA is a very weak requirement; it only demands that
the two tables be in accord/extensional agreement with each other. It is this notion
of implementation that leads some authors to conclude that almost every physical
system implements almost every specification (for more discussion, see Piccinini
2008 and Putnam 1988).

What has gone wrong? First, observe that in order to set up the correspondence
between the two tables, we have to compute the whole state table for our abstract
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machine.8 Consequently, the relationship is created post hoc. This point is made by
Copeland (1996) who observes that the mappings of SMA are illegitimate because
they are constructed after the computation has been performed. Others offer solutions
in terms of a lack of causal input in SMA (Chalmers 1996). Chalmers argues that this
can be rectified by changing the material conditional for a more causally substantive
one (e.g., a counterfactual conditional). The other solution insists that the account
must be enriched by adding more semantic content over and above that given by
the semantic definition of the language (Sprevak 2010). This semantic representation
has something to do with the specification of the program rather than its semantic
account. There is something to be said for each of these views, but we shall take
a different tack that is dictated by the view of programming languages as technical
artifacts.9

7 Intention

According to the dualism of technical artifacts, an object cannot be a technical artifact
by virtue of just its physical properties. To be such, an object must have a function,
and somehow the latter must involve human intentions. But whose intentions are
relevant?

Two specific contexts of intentional human action are of particular interest, namely
the engineering design context and the user context. In the engineering design
context the focus is on inventing/constructing a physical structure that will realise
a given function (or that satisfies a list of functional requirements or of design
specifications). (Kroes 2010)

We shall follow the maker or engineering perspective (Kroes 2010, 2012).10

If I observe a man arranging stones in a way that is consistent with the extensional
arrangement determined by some abstract machine, I may not legitimately infer that
he is building a device according to the abstract machine viewed as a functional
specification. He might just be arranging them for esthetic reasons. In general, a
physical device may be in accord with an abstract machine without being governed
by it. How might we tell the difference? How can we tell if she is under the authority
of the abstract machine or building a work of art? Presumably, we can ask: “what are
your intentions?”, “why did you do that?” For the former, the answer must refer to
the abstract specification. However, the essence of this maker use of function is not

8One might note in passing that this seems to make computers redundant.
9What makes programming languages special as constructed language? Is it possible to see a language
like Esperanto as a technical artifact? Does the latter have a physical realization?
10In the case of programming languages, the user is the programmer and the maker is the implementor.
The normative use of the definition of the language in the user case is complex and the issue of correctness
brings in the specification of individual programs. We shall not discuss this further here but see (Turner
2011).
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in the details or complexity of the process of construction or implementation. Indeed,
the whole process may be very rudimentary: in the limit, the process might amount
to no more than taking an existing physical object to be an X. For example, suppose
that I discover a large log in a field and decide that I can use it as a doorstop. I have
circumvented the construction stage, but still the notion of doorstop determines what
I am looking for and provides the criterion of correctness. If my log does not work
as a doorstop, it is the notion of doorstop that tells me this and my experimentation
with the log that demonstrates that it does not.

The essence of this intentional notion of function consists in taking it as a yardstick
of correctness (Turner 2010, 2011). In the case of our abstract machine, it is to take
it as a functional specification of a physical one. The function is a rule that must be
followed, and the relation between it and the physical object is manifest in using the
rule as a canon of correctness for the physical object. If I ask, does it work?, I must
be able to justify my reasons relative to the abstract device.

We seem to have embraced some version of the intentional approach to function
(McLaughlin 2001; Searle 1995). It is generally agreed that there must be structural
agreement between the function and its physical structure. But if all that we require
is that the agent take the object as an X, there is no necessary imposition of physical
structure. One might attempt to enforce this by postulating complex mental states. In
the present context, it would amount to the claim that the meaning of a programming
language exists as something in the mental structure or history of the agent. But, in
the case of programming languages, this is problematic.

Given . . . that everything in my mental history is compatible both with the conclu-
sion that I meant plus and with the conclusion that I meant quus,11 it is clear that
the sceptical challenge is not really an epistemological one. It purports to show that
nothing in my mental history of past behavior—not even what an omniscient God
would know—could establish whether I meant plus or quus. But then it appears
to follow that there was no fact about me that constituted my having meant plus
rather than quus. (Kripke 1982).

Kripke argues Wittgenstein that the meaning of plus cannot be fixed by the past or
present mental states of any agent. It is not a description of such mental states. Rather,
the meaning of plus is fixed by the agreed rules of addition. The abstract structure is
in the mathematical object itself.

Programming languages have a mathematical semantics and an implementation.
It is in the mathematical object that structure is located. And the semantics can stand
alone as a mathematical object, i.e., to be investigated as such. But when used as the
specification, it is given governance over the implementation. The intentional aspect
then comes into play: the agent gives the abstract semantics normative force over the
physical implementation: they must be in extensional accord. Abstract structure and
physical structure are linked by the intention to take the former as having normative

11Quus: a function that is only identical to plus up to a certain pair of numbers.
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governance over the latter. It is at this point that the piece of abstract mathemat-
ics takes on its functional guise. The agent’s intention relates the abstract and the
concrete.

To unpack this perspective more explicitly, it will be helpful to compare the notion
of functional specification to the scientific concept of theory. Wandering through a
field, I discover a collection of colored stones. I notice that they change color accord-
ing to my table of temperature changes. As an observer, I am intrigued by this thing:
what is it? Subsequently, I attempt to construct an account of what it does. Essen-
tially, I try and construct a theory of the device. After some reflection, I postulate that
it is a simple store machine. But this is not a normative activity; it is a descriptive one
that involves a theoretical characterization of the physical thing. To construct such
a theory or schematic model (Duhem 1906), one must choose the objects, proper-
ties, and relations that make up the theory. These are the features that will be subject
to testing and verification. The abstraction is a mathematical idealization where not
only are some physical aspects ignored, but they are idealized.

However, despite these analogies and similarities between such theory construc-
tion and normative function, there is a fundamental difference. In the theory case, any
lack of accord is laid firmly on the shoulders of the theory. When the theory diverges
from the physical thing, it is the theory that is at fault. For instance, when an abstract
machine is taken as a theory of a physical one, it is the physical device that is given
to us. When there is a mismatch, it is the theory, the abstract machine, that must be
sacrificed or modified. In contrast, in the case of specification, any lack of accord is
blamed on the physical object. Matters are reversed. Here, the function takes charge:
when there is disagreement, we blame the physical device. It is the physical device
that is correct or not. It is the physical object that is to be changed.

Of course, I may change my intention towards a given physical object or device. I
may, on finding my device and formulating a theory of it as a store machine, decide
to use it as a computer store. At this point, it changes from being a physical thing
with an attached theory to an artifact with a function. Provided it is in accord with
any abstract notion, the intentional act of using the latter as a functional specification
of an object creates a technical artifact. My intention has changed. What I previously
dubbed a defeasible theory is now a normative function. These different intentions
illustrate how impoverished the extensional/in accord account of correctness is. Such
a simplistic approach, ignores any form of intentional attitude between the abstract
and the physical one.

8 Computational Artifacts

The things that computer scientist build,12 programs, data types, type inference sys-
tems, etc. seem to have an abstract guise that enables us to reflect and reason about
them independently of any physical manifestation. For example, the data type of lists
consist of the set or type of lists together with operations that enable the formation of

12What I would like to refer to as computational artifacts.
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lists and their deconstruction. These are governed by several axioms that relate them.
For example,

tail(append(a, l)) = l

head(append(a, l)) = a.

One can reason about these in a mathematical way that is independent of any phys-
ical representation. Much the same applies to programs, types, compilers, virtual
machines, interpreters, etc. All of these notions seem to have an abstract guise that is
independent of their physical realization or implementation.

On the other hand, these objects must have a physical implementation that enables
them to be used as artifacts in the physical world. For instance, a program that has
no physical realization is of little use as a practical device for performing humanly
intractable computations. Computer science is not just an abstract discipline that is
independent of the physical world: it produces technical artifacts.

These brief concluding remarks need to be supported by a more detailed anal-
ysis of the other artifacts of computer science. But if programming languages and
programs are typical of the technical artifacts of computer science, then it seems to
be a strange blend of pure mathematics and technology (Strachey 2000), and conse-
quently, the philosophy of computer science, or at least the central part of it, should
be a fusion of the philosophy of mathematics and the philosophy of technology.
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