
98 February 1997/Vol. 40, No. 2 COMMUNICATIONS OF THE ACM

Jef Raskin

T
HE YEAR 1997 MARKS A HALF-CENTURY OF ELECTRONIC COMPUTING, BUT

it also falls on a lot of decades and half-decades in the history of HCI

(Human-Computer Interaction), personal computers, and even my own

involvement in the field.

Will Computers Ever
Become Easy to Use?
t h e s c i e n c e o f f u t u r e t e c h n o l o g y

Landmarks in Human-Computer
Interaction
Thirty-five years ago Ivan Sutherland was working on
Sketchpad, it has been 30 years since I published my
belief that computers should be graphics-based and
human-oriented (as opposed to character-based and
technically-oriented) [7], 25 years since Xerox Palo
Alto Research Center was established, 20 years since
Apple was incorporated, 15 years since Windows
development was started [4], and 10 years since the
Macintosh began to meet its sales goals and the com-
puter world at large became aware of the importance
of GUIs (Graphical User Interfaces).1

It is now evident that one of the most remarkable
changes in the computing milieu was in neither
hardware nor software per se but was embodied in an
interface design concept that has since been imple-
mented, with variations, on a variety of platforms
and operating systems. The primacy of the interface
was a revolution largely unforeseen by even the bold-

est of science fiction writers. Interface technology
has altered, perhaps forever, what it means to use a
computer, and is as significant for the majority of
computer users as was the advent of low-cost com-
puting itself.

The GUI, originally introduced primarily to pro-
vide a visual metaphor for an operating system, has
changed our culture, sometimes in surprising ways.
For example, when I first discussed “fonts” in con-
nection with computers in the late 1960s most com-
puter users didn’t know what I was talking about.
Fonts were the province of the typographer, the
printer, and the graphic artist. Now even school-
children have hundreds of fonts to use. The encapsu-
lation of access to the Internet in a GUI was certainly
a major factor in its recent emergence as a funda-
mental resource of the computer age.

The landscape has changed: thirty years ago you
could only have used a mouse at Doug Engelbart’s
group at SRI. Two decades ago it was only at PARC
that you could find what the majority of today’s users
would recognize as a computer interface. But the Mac-
intosh of a decade past would seem familiar to all of us.

Looking for a Humane Interface:

1I proposed the Macintosh project to Apple’s management in the spring of 1979; it
was approved later that year.

COMMUNICATIONS OF THE ACM February 1997/Vol. 40, No. 2 99

Landmines in Human-Computer
Interaction
We must not confuse the fact that our interfaces are
far better than in pre-GUI days with any idea that
they are optimal. The litany of complaints about
computers is endless. Rarely does a week go by
without one or more comic strips in our Sunday
paper poking fun at the foibles of computers. Most
of these complaints are due to failures of interface
design, a topic which should be taken broadly to
include everything the user must do from opening
the box to attaching cables to installing software to
how you shut down the machine (it’s absurd to have
to wait a few minutes while a computer prepares
itself for you to turn it off, yet Windows 95 does
exactly that).

Our present systems have come to be as large, com-
plex, and nightmarish as the mainframes they first
displaced (mainframes have become larger still; but
most computer users don’t have to deal directly with
them on a daily basis). Today’s personal computers are
certainly more approachable than what came before
them, but the GUI paradigm has not scaled well. We
still cling to archaic named-file-based storage para-
digms! To be a “power user” (one who uses a computer
near its potential and can fix most problems single-
handedly) you are expected to know intimately a
mountain of information, such as the over 300 differ-
ent settings or “preferences” of the system that sits
before me. Today, if you can’t fix a problem yourself,
you may be faced with expense, loss of time, frustra-
tion, embarrassment, and at very least an unpleasant
tryst with a slow voice-mail telephone system: “All
our technical assistants are busy right now, but your
call is important to us, and will be answered in the
order received…”. How often, when we find the prob-
lem, it turns out to merely be that one of those hun-
dreds of choices was set incorrectly!

Most users end up treating all this detail as
unknowable wizardry (in accord with Arthur C.
Clarke’s observation that any technology sufficiently
advanced is indistinguishable from magic) and avoid
“touching” things in hopes of keeping their systems
stable long enough to get some work done. Some
learn to avoid the computer itself whenever possible.

There is a normal human desire for a reasonably
constant environment. An update is an upset. In this
regard the current trend of releasing software incre-
mentally makes it easier to managing a program-
ming project. The potential for harm to users is
incalculable. The same is true of interface toolsets;
they encourage the rapid production of third-rate
interfaces—often by unqualified personnel.

Lost on the Desktop
But the problems of today’s GUIs run deeper than
their hundreds of local design errors and ever-
increasing complexity. The basic concept of operat-
ing-system-and-applications, even when the
operating system is disguised as a desktop, is flawed
from a cognitive perspective.

To make the discussion more concrete, let’s look
at a particular problem in as much depth as this
short essay permits. Experimental psychology has
shown that we can pay attention (be conscious of)
only one thing at any given moment (the exceptions
are few and specific enough to ignore in most inter-
face design). If, as often happens, we do more than
one thing at a time, all but one of them must be
“automatic,” that is, habitual. We are conscious of
only one of them. It is as if our minds consist of a
purely serial facility that is aware of a single stream
of events and a multiple set of facilities that can run
many tasks in parallel unconsciously, along with a
process that shuttles tasks between the facilities [1].
Unfortunately, the design of present-day interfaces
demands that we must be consciously aware of both
the task at hand and the current system state. We
cannot always safely surrender operation of the com-
puter to our automatic, trained responses and so
experience unnecessary frustration.

At present, each application in a GUI is a walled
city with its own customs and habits. Some current
systems allow a region with the behavior of applica-
tion B to be embedded in a region with the behavior
of application A. But this is only a patch on the
problem—for when you are in a region, the behavior
is determined by the local application. The way that
spelling checking, for example, operates may sud-
denly change as you move from one part of a docu-
ment to another. Your habitual modus operandi,
learned in application A, may trip you up when you
are in application B. Since your attention is on the
content of what you are trying to do rather than sys-
tem state, you may attempt to use the methods of
application A. This will fail, and your attention will
be displaced from your work to the interface itself,
where you will resolve the problem. Then you have
to refocus yourself on your work, having lost time
and, often, your train of thought. Mode errors are a
consequence of the human’s single locus of attention.

A central goal of interface design is to allow users
to make their own task the exclusive locus of their
attention, by designing the interface such that it can
be reduced to habitual operation. Too much of the
emphasis of current GUI design, due to the market-
ing needs of past years, is ease of learning at the

expense of productivity (the explosion of “features” in
the absence of global redesign has been widely dis-
cussed and is another major problem). As a result we
have systems that are a combination of easy-to-learn
menu-driven structures and relatively quick-to-use
but hard-to-remember sets of keyboard commands.
The user who desires efficiency has eventually to learn
both. But the union of two wrong systems does not
make for a single, unified, correct one. It is a common
myth that an interface is either easy to learn or easy to
use but not both. There is no theoretical reason to
believe this, and there are counterexamples; unfortu-
nately, there is not space here to discuss them.2

Measuring Interface Effectiveness: Cognetics
Too often I’ve been asked to fix a fundamentally
failed interface by adding color and a fancy splash
screen. It is like trying to repair a crumbling bridge
with a clever paint scheme. Along with heuristics
based on experienced, insight, and studies in psy-
chology (the fine work of Don Norman and Ben
Shneiderman comes to mind [5, 8]) we need to
develop the discipline of cognetics, an engineering
technology of applied physics, ergonomics, and cog-
nitive psychology.

Some strides have been made in science-based,
engineering-spirited HCI. Notable is the work
based on the GOMS (Goals, Operators, Methods,
Selection rules) model of Card, Moran, and Newell
[2], and its subsequent development involving Crit-
ical Path Methods such as John’s CPM GOMS [3].
Unknown to some and unused by most HCI practi-
tioners (in my experience), this carefully validated
work allows quantitative predictions of interface
performance. I look forward to the combining of
information theory and GOMS to define formal
measures of productivity, for example by dividing
the time to provide the minimum required input
(derived from information theory analysis) by the
time (as measured or as estimated by modeling)
required by the system of computer and user for the
task. We find, not surprisingly, that a dialog box
that has no choices (e.g., you can only press ENTER
before you can do any other task) has an productiv-
ity of 0. Desktop manipulations often have produc-
tivities under 0.1. Experimental work is needed to
show to what extent such formal measures corre-
spond to productivity in the field but the success of

the GOMS model leads me to believe that the empha-
sis in interface design will increasingly shift from
heuristics to cognetics [6]. Heuristics, if valid, will
become consequences of the underlying theory.

GOMS is presently limited to expert use of sys-
tems; the future will see cognetic methods for the
prediction of errors and the design and analysis of
systems for novices. While fundamental insights and
interface inventions will never “fall out” of the num-
bers any more than new theories can be summoned
mechanically in physics, there is an imbalance at
present in interface design: we lean too much in the
direction of raw insight and guruism. Cognetics
redresses the balance.

Beyond the Mouse
New input modes such as voice (foreseen in some
technical detail by Vannevar Bush over 50 years
ago), handwriting recognition, and direct mind-to-
machine (MTM) links are less central to improving
interface design than cognetic issues. While gloves
and 3D input devices engender a lot of popular
interest, the question of what are you going to have
to do, say, write, or think in order to accomplish
your goals generally goes unasked. I suspect most of
us would prefer to use an MTM interface rather than
type and shove a mouse around, but if the interface
in which MTM is embedded is full of modal traps,
complex navigational puzzles, and a multitude of
details to be memorized, the improvement will be
marginal and the interface will be as frustrating as
anything now available.

There are a host of valuable new interface direc-
tions, such as spatial data representation or two-
handed input devices, that have not been touched
upon here in the interest of concentrating on more
fundamental cognitive issues. Also note that GUIs
make computers more difficult to use for the blind.

Financial, Ethical, and Political Issues
It is difficult to create a good interface where man-
agement does not think HCI is important. It costs
money and takes time (in the short run). In my expe-
rience superior interfaces are exceptional long-term
investments that:

• produce customer satisfaction,
• increase the perceived value of a product,
• minimize the cost of customer support,
• achieve a competitive advantage, and
• establish brand loyalty.

100 February 1997/Vol. 40, No. 2 COMMUNICATIONS OF THE ACM

2The “CAT,” a product of Canon in Japan (designed by the author) is such
a counterexample.

The best interface can be undermined by poor
implementation, system, or data design. If a system
has bugs, crashes, allows incompatibilities, or does
not facilitate data exchange between platforms and
environments, it will not succeed.

Another factor would be helpful: in our legal sys-
tem, medical personnel have some safeguards that
allow them to practice their profession to high stan-
dards—for example, they can sue for wrongful ter-
mination if fired for refusing to follow a course of
action that poses a threat to their patients. Structural
engineers have similar protection from overzealous
management. As an interface designer I have often
been put in the position where I was directed to
work within a set of design decisions that would
increase the error rate, frustration, and hamper the
productivity of users, thus doing psychological harm
(my usual reaction is to quit: however this requires
accepting a significant financial burden). Codes of
ethics such as the ACM’s, while helpful, do not serve
to protect our livelihood. The future of interface
design I’d like to see includes legislated protection
for conscientious practitioners.

Can New Interfaces be Introduced?
Marketing a new and different interface, however
much of an improvement it is, is seen as an insur-
mountable difficulty by most of the industry. This is a
classic mistake: greatly improved products represent
an opportunity. You cannot expect present users, espe-
cially in the business community which is all-too-
aware of its huge investment in today’s ways of doing
things, to embrace a new system, but you can sell to
legions of new users and millions of dissatisfied users.
If the company providing the improved product has
the stamina and financial resources to stay the
course—and some luck—these new (and more pro-

ductive) users will eventually come to the fore.
At present Silicon Valley and the other technolog-

ical triangles, loops, and glens are somewhat compla-
cent and consider the problem of interface design
essentially “solved,” needing only a bit of touch-up
here and there. For many users and developers, today’s
GUI is the only conceivable interface. Their very suc-
cess impedes the needed radical improvements. In
spite of these formidable difficulties, we will do bet-
ter. Those companies that cling to the status quo will
not be able to also hold on to their customers.

Acknowledgments
Brian Howard, Linda Blum, Bill Buxton, Eric
Slosser, and Dick Karpinski provided useful critiques
and suggestions.

References and Notes
1. Baars, B. A Cognitive Theory of Consciousness. Cambridge University Press,

Cambridge, Mass., 1988. A view of the capabilities and limitations of
human mental performance with strong implications for man-machine
interface design.

2. Card, S., Moran, T., and Newall, A. The Psychology of the Human-
Computer Interface. Erlbaum, Hillsdale, NJ, 1983. The first book
on cognetics.

3. John, B. GOMS? Interactions. (Oct. 1995). A superb overview with point-
ers to the central literature. Her own work is worthy of careful study.

4. Linzmayer, O. The Mac Bathroom Reader. Sybex Inc., Alameda, CA,
1994. One of the more accurate histories of the Mac and very early Win-
dows development, in spite of its title.

5. Norman, D. The Psychology of Everyday Things. Basic Books, New York,
1988. His most popular work is a delight to read. His technical work is
of central importance.

6. Raskin, J. “Rationalizing information representation.” A chapter in
Information Design, R. Jacobson, Ed. MIT Press, in preparation.

7. Raskin, J. The Quick Draw Graphics System. Pennsylvania State Univer-
sity, State College, PA, 1967

8. Shneiderman, B. Designing the User Interface. Addison-Wesley, Reading,
Mass., 1987. One among many of his books.

.

Jef Raskin (jefraskin@aol.com)

Copyright held by the author

C

COMMUNICATIONS OF THE ACM February 1997/Vol. 40, No. 2 101

It was my good fortune to have been at the vector that brought the infectious GUI into the personal computer industry. At first
it was a concept too alien even for “visionaries.” Without success I tried to explain the importance of graphical interfaces to Apple
founders Steve Wozniak and Steve Jobs in the now-famous garage in 1976. I became their 31st employee in 1978 and the next
year started a project to build a computer that I named “Macintosh” after my favorite apple, the McIntosh. At that time even
Apple’s contemporaneous Lisa project was a character-generator-based system, though it soon adopted the graphics-only display
architecture from the Mac. It is little known that the Macintosh project was canceled by Jobs, and I had to continue it unofficially
until I could get it re-funded. To get his support, I helped maneuver Jobs (who was fond of saying that innovation could not come
out of large companies) to visit Xerox PARC and see a GUI in action. It worked. However, I got more than his support—in 1982
Jobs, having been ejected from the Lisa group,* took over the Macintosh project and I was offered the position of managing the
Macintosh manual writing team. Having already run publications at Apple for a number of years, I left the company.

*See Stross, R. Steve Jobs and the NeXT Big Thing. Atheneum, New York, 1993. An incredible true tale of massive managerial mayhem.

